Exam on Rewriting Theory (2 hours)

Frédéric Blanqui (INRIA)

The exam is made of 5 exercises that can be done in any order.
Answers must be written in French or in English.
All answers must be clearly justified with enough details.

Exercise 1 (4 points) Is the following system confluent and terminating?

1. \(\text{add}(\text{zero}, y) \rightarrow y \)
2. \(\text{add}(\text{succ}(x), y) \rightarrow \text{succ}(\text{add}(x, y)) \)
3. \(\text{mul}(\text{zero}, y) \rightarrow \text{zero} \)
4. \(\text{mul}(\text{succ}(x), y) \rightarrow \text{add}(y, \text{mul}(x, y)) \)
5. \(\text{add}(\text{add}(x, y), z) \rightarrow \text{add}(y, \text{add}(x, z)) \)
6. \(\text{mul}(\text{add}(x, y), z) \rightarrow \text{add}(\text{mul}(x, z), \text{mul}(y, z)) \)

Exercise 2 (2 points) Let \(R \) be a set of rewrite rules of the form \(f\vec{l} \rightarrow r \).
Let \(P \) be the set of (unmarked) dependency pairs \((l, r)\) of \(R \) such that \(r \) is not a strict subterm of \(l \). Prove that \(\rightarrow_R \) terminates if and only if \(\rightarrow_P \) terminates.

Exercise 3 (2 points) Let \(k \in \mathbb{Z} \). Prove that a rewrite system \(R \) terminates by using a monotone polynomial interpretation on \(D_k = \{ n \in \mathbb{Z} \mid n \geq k \} \) if and only if it terminates by using a monotone polynomial interpretation on \(D_0 \).

Exercise 4 (2 points) Let \(R \) be a relation on some set \(A \), and \(\leftrightarrow \) be a symmetric relation on \(A \). Let \(E = \leftrightarrow^* \) and \(\overline{R} = R^{-1} \), that is, \(tRt' \) iff \(uRu' \).
We say that:

- \(R \) is confluent modulo \(E \) iff \(\overline{R}E \overline{R} \subseteq R^*E \overline{R}^* \), that is, for all \(t, u, t', u' \) such that \(t\overline{R}t' \) \(E \) \(u \) \(\overline{R}u' \), there are \(v, w \) such that \(t\overline{R}v \) \(E \) \(w \overline{R}u' \).
- \(R \) is \(\leftrightarrow \)-locally confluent modulo \(E \) iff \(\overline{R}(R \cup \leftrightarrow) \subseteq R^*E \overline{R}^* \).

Prove that \(R \) is confluent modulo \(E \) if \(R \) is \(\leftrightarrow \)-locally confluent modulo \(E \) and \(\overline{R}E \overline{R} \) terminates.

Hint: since \(\overline{R}E \overline{R} \) terminates, every element has a normal form wrt \(R \).

Exercise 5 (2 points) An equation is closed if it contains no variable. Given a set \(E \) of equations, let \(=_E \) be the smallest monotone and stable equivalence relation containing \(E \). Prove that, for all finite sets of closed equations \(E \), \(=_E \) is decidable.

Hint: \(>_{\text{lpo}} \) is total on closed terms if \(> \) is total on function symbols.