Homework on rewriting theory

Frédéric Blanqui (INRIA)

(strict) deadline: 2 November 2020 at 12:00

evaluation criteria: correctness, presentation and precision

Let \mathcal{F}_1 and \mathcal{F}_2 be two disjoint signatures (i.e. $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$), \mathcal{V} be a set of variables disjoint from \mathcal{F}_1 and \mathcal{F}_2, \mathcal{R}_1 be a set of rewrite rules on \mathcal{F}_1 such that $\to_1 = \to_{\mathcal{R}_1}$ terminates on $\mathcal{T}_1 = \mathcal{T}(\mathcal{F}_1, \mathcal{V})$, and \mathcal{R}_2 be a set of rewrite rules on \mathcal{F}_2 such that $\to_2 = \to_{\mathcal{R}_2}$ terminates on $\mathcal{T}_2 = \mathcal{T}(\mathcal{F}_2, \mathcal{V})$. Then, let \to be the rewrite relation on $\mathcal{T} = \mathcal{T}(\mathcal{F}_1 \cup \mathcal{F}_2, \mathcal{V})$ generated by $\mathcal{R}_1 \cup \mathcal{R}_2$. We are going to study sufficient conditions for the termination of \to.

To this end, we will use the following notions.

A (multi-holes) context is a term of $C = \mathcal{T}(\mathcal{F} \cup \{\Box\}, \mathcal{V})$ where \Box, the empty context, is a new constant of arity 0. If C is a context and p_1, \ldots, p_n are the positions of the occurrences of \Box in C from left to right, then $C[t_1, \ldots, t_n]$ denotes the term of C obtained by replacing the i-th occurrence of \Box by t_i for every i in $\{1, \ldots, n\}$.

A symbol is of color $k \in \{1, 2\}$ if it belongs to \mathcal{F}_k. A non-empty context non-reduced to a variable is of color k if it belongs to $C_k = \mathcal{T}(\mathcal{F}_k \cup \{\Box\}, \mathcal{V})$. The opposite color of k, written \overline{k}, is 2 if $k = 1$, and 1 if $k = 2$.

Every element of \mathcal{T} is of the form $C[t_1, \ldots, t_n]$ with C a variable or a non-empty context of color k and every t_i headed by a symbol of color \overline{k}. C is called the cap of t and is denoted by $\cap(t)$. The terms t_1, \ldots, t_n are called the aliens of t. Their multiset is denoted by $\aliens(t)$.

Exercise 1 (2 points) Let \to_h be the restriction of \to to homogeneous terms, that is, the relation such that $t \to_h u$ iff $t \to u$ and both t and u belong to $\mathcal{T}_1 \cup \mathcal{T}_2$. Prove that \to_h terminates.

Exercise 2 (3 points) The rank of a term $t \in \mathcal{T}$, $\rk(t)$, is the maximum number of color layers in t: $\rk(t) = 1 + \sup_{a \in \aliens(t)} \rk(a)$. Prove that the rank cannot increase by reduction: if $t \to u$, then $\rk(t) \geq \rk(u)$.

- **Hint 1**: Look how evolve $\cap(t)$ and $\aliens(t)$ when $t \to u$.
- **Hint 2**: Proceed by induction on $\rk(t)$.

Exercise 3 (4 points) A rewrite rule $l \to r$ is collapsing if r is a variable. Prove that \to terminates if both \mathcal{R}_1 and \mathcal{R}_2 are non-collapsing.

- **Hint**: Look how $\cap(t)$ and $\aliens(t)$ evolve when $t \to u$, and devise a lexicographic combination of well-founded relations to prove the termination of every term $t \in \mathcal{T}$.

Exercise 4 (4 points) Given a term t, we define $S(t)$ to be the multiset made of t, the aliens of t, the aliens of the aliens of t, . . . : $S(t) = \sum_{i \geq 1} S_i(t)$ where $S_1(t) = [t]$ and, for all $i \geq 1$, $S_{i+1}(t) = \sum_{a \in \aliens(t)} S_i(a)$.
A rewrite rule \(l \rightarrow r \) is duplicating if some variable has more occurrences in \(r \) than it has in \(l \). Prove that \(\rightarrow \) terminates if both \(R_1 \) and \(R_2 \) are non-duplicating.

Hint: Look how \(rk(t) \) and \(S(t) \) evolve when \(t \rightarrow u \), and devise a lexicographic combination of well-founded relations to prove the termination of every term.

Exercise 5 (3 points) Assume that \(R_1 \) is non-collapsing and non-duplicating.

Let
\[
\|t\| = \begin{cases}
0 & \text{if } t \in \mathcal{V} \\
\sum_{a \in \text{aliens}(t)} \|a\| & \text{if } \text{cap}(t) \in \mathcal{T}_1 \\
1 + \sup_{a \in \text{aliens}(t)} \|a\| & \text{if } \text{cap}(t) \in \mathcal{T}_2
\end{cases}
\]

Prove that \(\|t\| \geq \|u\| \) whenever \(t \rightarrow u \).

A reduction \(t \rightarrow u \) is destructive at level 1 if it is done in \(\text{cap}(t) \) and \(t \) and \(u \) have different colors. It is destructive at level 2 if it is a destructive reduction at level 1 in some alien of \(t \).

Observe that, if the reduction is destructive at level 1 or 2, then \(\|t\| > \|u\| \).

Exercise 6 (4 points) Prove that \(\rightarrow \) terminates if \(R_1 \) is non-collapsing and non-duplicating.