Homework on rewriting theory

Frédéric Blanqui (INRIA)

The homework can be written in English or in French.
All answers must be justified.

Let $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ be a signature and \mathcal{V} be an infinite set of variables.
Let \preceq be the subterm relation, and \prec be its strict part. Let \succeq and \succ be their inverse relations respectively.
Given a quasi-order \succeq, let \preceq be its inverse and $\succ = \succeq \setminus \preceq$ be its strict part.

Reminders:

• A relation is stable if it is closed by substitution.
• A relation is monotone if it is closed by context.
• A rewrite relation is a relation stable and monotone.
• An interpretation of \mathcal{F} in some set A is given by a function $f_I : A^n \to A$ for each $f \in \mathcal{F}_n$. Then, given a relation R on A, R_I is the relation on terms such that tR_Iu iff, for all valuation $\xi : \mathcal{V} \to A$, $t\xi Ru\xi$, where $t\xi$ is the interpretation of t in A wrt the valuation ξ.

Exercise 1 Prove that every terminating rewrite strict-order \succ that is total (for all $t \neq u$, either $t \succ u$ or $t \prec u$) contains \succ.

In this homework, we will explore the use of quasi-orders containing \succ for proving termination.

Exercise 2 Let \succeq_F be a quasi-order on \mathcal{F} whose strict part \succ_F terminates, and \succ_{mpo} be its associated MPO. Prove that \succ_{mpo} is a rewrite strict-order containing \succ.

Exercise 3 Let $> : A \to A$ be a strict-order on a set A, and I be an interpretation of \mathcal{F} in A, that is, a function $f_I : A^n \to A$ for every $f \in \mathcal{F}_n$. Prove that:

(a) $>_{f}$ is a rewrite strict-order if the functions f_I are strictly monotone ($f_I \ldots x \ldots > f_I \ldots y \ldots$ whenever $x > y$).

(b) \geq_I is a rewrite quasi-order if the functions f_I are monotone ($f_I \ldots x \ldots \geq f_I \ldots y \ldots$ whenever $x \geq y$).

(c) \geq_I contains \succeq if the functions f_I are extensive ($f_I \ldots x \ldots \geq x$).
(d) \(\succeq_I \) contains \(\succeq \) if the functions \(f_I \) are strictly monotone (\(f_I \ldots x\ldots > f_I \ldots y\ldots \) whenever \(x > y \)) and \(> \) is a well-order on \(A \) (every non-empty subset of \(A \) has a least element).

Exercise 4 Find a rewrite strict-order containing \(\succ \) that does not terminate.

Exercise 5 Prove that a stable strict-order \(\succ \) such that \(\succeq \subseteq \succeq \) cannot introduce new variables, that is, if \(t \succ u \) then \(\mathcal{V}(u) \subseteq \mathcal{V}(t) \).

Let \(\sqsubseteq \) be the smallest relation on terms such that:

- \(\text{(var)} \) for all variables \(x, x \sqsubseteq x \);
- \(\text{(mon)} \) if \(f \in \mathcal{F}_n, t_1 \sqsubseteq u_1, \ldots, t_m \sqsubseteq u_m, \) then \(ft_1 \ldots t_m \sqsubseteq fu_1 \ldots u_m \);
- \(\text{(sub)} \) if \(t \sqsubseteq u_k, \) then \(t \sqsubseteq fu_1 \ldots u_m \).

Let \(\sqsubset \) be the strict part of \(\sqsubseteq \).

Exercise 6 Prove the following properties:

(a) \(\sqsubseteq \) is reflexive.
(b) \(\sqsubseteq \) is transitive.
(c) \(\sqsubseteq \) is antisymmetric.
(d) \(\sqsubseteq \) is monotone.
(e) \(\sqsubseteq \) is stable.
(f) \(\sqsubseteq \) contains the subterm relation \(\sqsubseteq_t \).
(g) \(\sqsubseteq \) is the smallest rewrite order containing \(\sqsubseteq_t \).
(h) \(\sqsubseteq \) is the smallest rewrite strict-order containing \(\sqsubset_t \).
(i) \(\sqsubseteq \) is decidable if \(\mathcal{F} \) and \(\mathcal{V} \) are decidable.

(Hint: define \(F : \mathcal{T} \times \mathcal{T} \rightarrow \{0, 1\} \) and prove that \(F(t, u) = 1 \) iff \(t \sqsubseteq u \).)

Exercise 7 Prove that the rewrite rule

\[
\text{div} \ (s \ x) \ (s \ y) \ \rightarrow \ s(\text{div} \ (\text{minus} \ x \ y) \ (s \ y))
\]

is included in no rewrite strict-order containing \(\succ \).
Exercise 8 Prove that a rewrite strict-order containing \triangleright terminates if \mathcal{F} is finite.

Hint: use Kruskal theorem saying that in any infinite sequence of terms $(t_i)_{i \in \mathbb{N}}$ with a finite number of symbols (function or variable), there are $j < k$ such that $t_j \sqsubseteq t_k$.

Exercise 9 Let \mathcal{R} be a set of rewrite rules. Prove that $\rightarrow_{\mathcal{R}}$ terminates if \mathcal{F} is finite and there is an interpretation I of \mathcal{F} in \mathbb{R} such that $\mathcal{R} \subseteq >_I$ and, for every f, (a) $f_I \ldots x \ldots > f_I \ldots y \ldots$ whenever $x > y$, and (b) $f_I \ldots x \ldots > x$, where $>$ is the (non-terminating!) standard order on \mathbb{R}.