1 Basic definitions and results

1.1 Tarski’s fixpoint theorem

We start by recalling a useful result for justifying inductive definitions due to Tarski [11]:

Lemma 1 If \((A, \leq)\) is a complete lattice (i.e. every subset \(X\) of \(A\) has a greatest lower bound \(\text{glb}(X)\) and a lowest upper bound \(\text{lub}(X)\)) and \(f : A \to A\) is monotone, then \(f\) has a least fixpoint \(\text{lfp}(f)\) (\(x\) is a fixpoint of \(f\) if \(f(x) = x\)).

Proof. Let \(X = \{x \in A | f(x) \leq x\}\) and \(a = \text{glb}(X)\). By definition, \(f(a) \leq a\). By monotony, \(f(f(a)) \leq f(a)\). Hence, \(f(a) \in X\). Therefore, \(a \leq f(a)\). ■

In particular, the powerset of a set \(A\), \(\wp(A)\), is a complete lattice wrt \(\subseteq\): given \(X \subseteq A\), \(\text{lub}(X) = \bigcup X\), \(\text{glb}(X) = \bigcap X\) if \(X \neq \emptyset\), and \(\text{glb}(\emptyset) = A\).

In fact, Tarski showed more than that: he showed that the set of all the fixpoints of \(f\) is a non-empty complete lattice. Later, Davis proved that this characterizes complete lattices: a poset where every monotone function has a fixpoint is complete [3].

1.2 Properties of relations

Given a relation \(R\), let:

- \(R(t) = \{u | tRu\}\);
- \(R^+\) be its transitive closure, that is, the smallest transitive relation containing \(R\);
- \(R^*\) be its reflexive and transitive closure;
- \(R^\square\) be its reflexive closure;
- \(R^{-1}\) be its inverse: \(tR^{-1}u\) iff \(uRt\).
• R^l be the relation such that $tR^l u$ iff $tR^* u$ and $R(u) = \emptyset$.

An element t is in normal form or irreducible wrt a relation R if $R(t) = \emptyset$.

A relation R is:

• entire if, for all x, there is y such that $(x, y) \in R$.

• weakly normalizing if every element has at least one normal form.

• terminating (or strongly normalizing, or Noetherian) if there is no infinite sequence $t_0Rt_1R\ldots$.

If R terminates, then R^{-1} is well-founded (every non-empty subset has an element minimal wrt R^{-1}). But, in the context of rewriting theory, where R is usually written \rightarrow, we often say that R itself is well-founded (instead of speaking of the relation \leftarrow).

• a pre-order or quasi-order if it is reflexive and transitive (but not necessarily anti-symmetric).

Given a quasi-order R, let its strict part be $R - R^{-1}$ and its associated equivalence relation be its symmetric closure (smallest relation containing both R and R^{-1}). Usually, if R is denoted by \leq, then its strict part is denoted by $<$ and its associated equivalence relation by \simeq.

By abuse of language, we often say that a quasi-ordering terminates instead of saying that its strict part terminates.

Strong normalization implies weak normalization.

1.3 Well-founded induction

Well-founded induction is a very useful tool in many areas of computer science. It generalizes induction on natural numbers.

To justify it, we however need a restricted form of the Axiom of Choice:

Definition 1 (Axiom of dependent choice) If A is non-empty and R is an entire relation on A, then there exists an infinite R sequence $t_0Rt_1R\ldots$, that is, a function $f : \mathbb{N} \to A$ such that, for all k, $f(k)Rf(k+1)$.

Theorem 1 Let R be a terminating relation on a set A, and P be a subset of A. Then, $P = A$ if, for all $t \in A$, we have $t \in P$ whenever $R(t) \subseteq P$.

Proof. Assume that $P \neq A$. Let R' be the restriction of R to $A - P$. R' terminates and, for all $t \in A - P$, there is $u \in R'(t)$. Hence, by the axiom of dependent choice, there is an infinite sequence of R' steps. Contradiction. ■

Example: $R = \{(n+1, n) | n \in \mathbb{N}\}$ gives the usual induction principle on \mathbb{N}.

2
Lemma 2 (Newman, 1942, [9]) If R is terminating and locally confluent, then R is confluent.

Proof. By well-founded induction on R. Assume that $t R^* u_i$, $i \in \{1, 2\}$. If $t = u_1$ or $t = u_2$, then we are done. Otherwise, for all i, there is t_i such that $t R t_i R^* u_i$. By local confluence, there is u such that, for all i, $t_i R^* u$. Now, by induction hypothesis, there is v such that $u R^* v$ and $u R^* v$. And since $t_2 R^* u R^* v$, by induction hypothesis again, there is w such that $u_2 R^* w$ and $v R^* w$. \blacksquare

1.4 Product relations

Given two relations R and S on some respective sets A and B, let:

- the parallel product relation of R and S be the relation $R \times_{par} S$ on $A \times B$ such that $(a, b) R \times_{par} S(a', b')$ if $a R a'$ and $b S b'$;

- the sequential product relation of R and S be the relation $R \times_{seq} S$ on $A \times B$ such that $(a, b) R \times_{seq} S(a', b')$ if either $a R a'$ and $b = b'$, or $a = a'$ and $b S b'$;

- the lexicographic product relation of R and S be the relation $R \times_{lex} S$ on $A \times B$ such that $(a, b) R \times_{lex} S(a', b')$ if either $a R a'$ or $a = a'$ and $b S b'$.

All these product relations preserve termination: if R and S terminate, then $R \times S$ terminate.

When R and S are quasi-orders, these constructions can be generalized by replacing $=$ by \simeq.

3
1.5 Finite sequences or words

Given a relation \(R \) on \(A \), the lexicographic extension of \(R \) on \(A^* \), \(R_{\text{lex}} \), is defined as follows: \(\vec{a} R_{\text{lex}} \vec{b} \) if there is \(i \leq \min\{|\vec{a}|, |\vec{b}|\} \) such that \(a_i R b_i \) and, for all \(j < i \), \(a_j = b_j \).

Note that \(R_{\text{lex}} \) does not generally terminate even though \(R \) so does: if \(R = \{(a, b)\} \), then \(a R_{\text{lex}} b \, ba R_{\text{lex}} bba R_{\text{lex}} \ldots \)

We can however define terminating restrictions of it. For instance, by bounding the number of letters that can be compared: given \(n \in \mathbb{N} \), let \(\vec{a} R_{n \text{lex}} \vec{b} \) if there is \(i \leq \min\{|\vec{a}|, |\vec{b}|, n\} \) such that \(a_i R b_i \) and, for all \(j < i \), \(a_j = b_j \).

1.6 Finite multisets

Finite multisets are a very useful termination tool. A finite multiset on a set \(A \) is a function \(M : A \to \mathbb{N} \) the support of which is finite (\(M(a) \) is called the multiplicity of \(a \) in \(M \)). Let \(\mathbb{M}(A) \) be the set of finite multisets on \(A \). A multiset can be seen as a set where elements can occur more than once. For more details about multisets, see for instance [5, 12, 1].

A relation \(> \) on \(A \) can be extended into a relation \(>_{\text{mul}} \) on \(\mathbb{M}(A) \) as follows: \(M >_{\text{mul}} N \) iff there are multisets \(X, Y \) and \(Z \) such that \(M = Z + X \), \(N = Z + Y \), \(X \neq \emptyset \) and \(Y \subseteq > (X) \), that is, for all \(y \in Y \), there is \(x \in X \) such that \(x > y \).

Hence, in a multiset comparison, an element can be replaced by any number (including 0) of smaller elements.

Alternatively, \(>_{\text{mul}} \) is the transitive closure of \(>_{\text{m}} \) where \(M >_{\text{m}} N \) iff there are \(Z, x \) and \(Y \) such that \(M = Z + [x] \), \(N = Z + Y \) and \(x > Y \).

Example: On \(\mathbb{N} \), we have: \[3] >_{\text{mul}} [2, 2, 2, 2] >_{\text{mul}} [2, 2, 2, 1, 1] >_{\text{mul}} [2, 2, 2, 1, 0, 0, 0] >_{\text{mul}} \ldots >_{\text{mul}} \emptyset \].

Proposition 1 • If \(> \) is a strict order, then \(>_{\text{mul}} \) is irreflexive.

• If \(> \) is transitive, then \(>_{\text{mul}} \) is transitive.

Lemma 3 \(>_{\text{mul}} \) is terminating order whenever \(> \) so is.

Proof. Dershowitz and Manna’s proof uses König’s lemma. Van Oostrom suggests that this property can be proved by slightly modifying Nash-Williams’ proof of Kruskal theorem. However, the simplest proof is due to Buchholz [10]:

First note that it is sufficient to prove the termination of \(>_{\text{m}} \).

To this end, we prove that, for all \(M, M \) terminates, by induction on the multiset cardinal of \(M \) (i.e. sum of multiplicities) (1). If \(M = \emptyset \), this is immediate. Otherwise, \(M = N + [x] \). By induction hypothesis (1), \(N \) terminates.

We then prove that, for all \((x, N) \) such that \(N \) terminates, \(N + [x] \) terminates, by induction on \((>_{\text{m}})(\leq_{\text{lex}}) \) (2). To this end, it suffices to prove that every reduct \(P \) of \(N + [x] \) terminates. There are two cases:

\[\text{\ldots}\]
\[P = N' + [x] \text{ and } N >_m N'. \text{ Since } N \text{ terminates, } N' \text{ terminates. Therefore, by induction hypothesis (2), } P \text{ terminates.} \]

\[P = N + Y \text{ and } x > Y. \text{ We then prove that, for all } Y < x, N + Y \text{ terminates, by induction on the multiset cardinal of } Y \text{ (3). If } Y = \emptyset, \text{ this is immediate. Otherwise, } Y = Y' + [y]. \text{ By induction hypothesis (3), } N + Y' \text{ terminates. Therefore, by induction hypothesis (2), } (N + Y') + [y] = N + Y \text{ terminates.} \]

Remark:

Lemma 4 If \(M >_{\text{mul}} N \) and \(P \subseteq >_{(M - > (N))} \), then \(M >_{\text{mul}} N + P. \)

Proof. Assume that \(M = Z + X, N = Z + Y, X \neq \emptyset \) and \(Y \subseteq >_{(X)} \). The result holds since \(P \subseteq >_{(Z + X) - > (Z + Y)} = >_{(X)} - > (Z + Y) \subseteq >_{(X)} \).

\[\square \]

2 The recursive path ordering (RPO)

Another reduction order is the recursive path ordering (RPO) introduced by Dershowitz in 1979 [4].

The idea is to extend a well-founded ordering on function symbols (prece-
dence) into a well-founded ordering on terms by comparing the head symbols and then the subterms recursively.

Definition 2 (Recursive Path Ordering) Given a quasi-order \(\succeq \) on \(\mathcal{F} \), let the multiset path ordering (MPO) \(>_{\text{rpo}} \) be the smallest relation on terms such that \(t >_{\text{rpo}} u \) if \(t = f \vec{t} \) and either:

1. \(t_i >_{\text{rpo}} u \) for some \(i; \)
2. \(u = g \vec{u}, f \succ \mathcal{F} g \text{ and } t >_{\text{rpo}} u_i \) for all \(i; \)
3. \(u = g \vec{u}, f \simeq_{\mathcal{F}} g, t >_{\text{rpo}} u_i \) for all \(i, \) and \(\vec{t}(>_{\text{rpo}})_{\text{mul}} \vec{u}. \)

The lexicographic path ordering (LPO) [6] is obtained by replacing \((>_\text{rpo})_{\text{mul}} \) by \((>_\text{rpo})_{\text{lex}}^n \) for some fixed \(n \) (e.g. the maximal arity of function symbols if it is finite). Finally, both can be combined into the recursive path ordering (RPO) by using a function status : \(\mathcal{F} \rightarrow \{\text{mul, lex}\} \) such that \(\text{status}(f) = \text{status}(g) \) whenever \(f \simeq g, \) and replacing \((>_\text{rpo})_{\text{mul}} \) by \((>_\text{rpo})_{\text{status}(f)} \).

Theorem 2 \(>_{\text{rpo}} \) terminates whenever \(> \) terminates.

Proof. Dershowitz’ original proof works for finite signatures only. It consists in first proving that \(>_{\text{rpo}} \) is a transitive rewrite relation containing the superterm relation, and then proving that, on finite signatures, such a relation terminates since its inverse is a well-quasi-order (wqo) by Kruskal’s theorem [7, 8], which says that the tree embedding extension of a wqo on \(\mathcal{F} \) (the equality here) is a wqo on \(\mathcal{T(\mathcal{F}, \emptyset)} \).
Instead, we will follow Buchholz’ proof [2] which is not restricted to finite signatures. We prove that every term t terminates by induction on t. If $t \in V$, this is immediate. Therefore, it remains to prove that, for all f and terminating terms $t, ft'\, \text{terminates. We proceed by induction on } > \times_{\text{lex}} (\geq_{\text{rpo}})_{\mu}(1)$. To prove that ft' terminates, it suffices to prove that, for all u such that $ft' \geq_{\text{rpo}} u$, u terminates. We prove this by yet another induction on u (2):

1. u terminates since $t_i \geq_{\text{rpo}} u$ and t_i terminates.
2. By induction (2), \bar{u} terminate. Therefore, by induction (1), u terminates.
3. Idem.

References