Complexity by typing

Antoine Taveneaux directed by Frédéric Blanqui

Friday 17th July 2009
Table of contents

1. First definitions
2. What is the complexity of a rewriting system?
3. 2 points of view for this work
4. From the size to complexity
First introduction

This work is based on 2 line of work:

- Complexity in rewriting systems (by Jean-Yves Marion for example).
- Termination in rewriting systems using type size annotations (by Frédéric Blanqui for example)

Is it possible to extend the type system on the size to prove the termination of a function to a type system to bound the complexity?

Question

How check indication about the complexity of a function with a annotations on types?
First introduction

This work is based on 2 line of work:

- Complexity in rewriting systems (by Jean-Yves Marion for example).
- Termination in rewriting systems using type size annotations (by Frédéric Blanqui for example).

Is it possible to extend the type system on the size to prove the termination of a function to a type system to bound the complexity?

Question

How check indication about the complexity of a function with a annotations on types?
1. First definitions

2. What is the complexity of a rewriting system?

3. 2 points of view for this work

4. From the size to complexity
We consider programmes define with a rewriting system and by first order terms.

Terms are define on symbols of function, constructor and variable.
How does it work?

A rewriting system gives rules to transform a term into another.

- When we cannot rewrite a term we say that it is in normal form.
First definitions

What is the complexity of a rewriting system?

2 points of view

From the size to complexity

An example

\[(S = \{0, s, +\}, C = \{0, s\}, F = \{+\}, E) \text{ with } E \text{ describe by} \]
\[\text{following equations :} \]
\[\begin{align*}
 + 0 \ y & \rightarrow \ y \\
 + s(x) \ y & \rightarrow + x \ s(y)
\end{align*} \]

On the term \(+ s(s(0)) \ s(0) \):

\[+ s(s(0)) \ s(0) \rightarrow + s(0) \ s(s(0)) \rightarrow + 0 \ s(s(s(0))) \rightarrow s(s(s(0)))) \]
First definitions
What is the complexity of a rewriting system?
2 points of view
From the size to complexity

An example

\((S = \{0, s, +\}, \mathcal{C} = \{0, s\}, \mathcal{F} = \{+\}, \mathcal{E}) \) with \(\mathcal{E} \) describe by following equations:

\[
\begin{cases}
+ 0 \, y \rightarrow y \\
+ s(x) \, y \rightarrow + x \, s(y)
\end{cases}
\]

On the term \(+ \, s(s(0)) \, s(0) \):

\[+ \, s(s(0)) \, s(0) \rightarrow + \, s(0) \, s(s(0)) \rightarrow + \, 0 \, s(s(s(0))) \rightarrow s(s(s(0))))\]
An example

\((S = \{0, s, +\}, C = \{0, s\}, F = \{+\}, E)\) with \(E\) describe by following equations:

\[
\begin{align*}
+ 0 \ y & \rightarrow y \\
+ s(x) \ y & \rightarrow + x \ s(y)
\end{align*}
\]

On the term \(+ s(s(0)) \ s(0)\):

\[
+ s(s(0)) \ s(0) \rightarrow + s(0) \ s(s(0)) \rightarrow + 0 \ s(s(s(0))) \rightarrow s(s(s(0))))
\]
What is the complexity of a rewriting system?

2 points of view

From the size to complexity

An example

$(S = \{0, s, +\}, C = \{0, s\}, F = \{+\}, E)$ with E describe by following equations:

\[
\begin{cases}
 + 0 \ y \rightarrow \ y \\
 + s(x) \ y \rightarrow + x \ s(y)
\end{cases}
\]

On the term $+ s(s(0)) \ s(0)$:

$+ s(s(0)) \ s(0) \rightarrow + s(0) \ s(s(0)) \rightarrow + 0 \ s(s(s(0))) \rightarrow s(s(s(0))))$
First definitions

What is the complexity of a rewriting system?

2 points of view for this work

From the size to complexity
The complexity of a derivation is the length of this derivation.

Definition

We say that a term $t \in T(C \cup F, \mathcal{X})$ have a complexity $n \in \mathbb{N}$ if it is the length of the longest derivation:

$$\max\{ n \mid \text{there have a derivation with a length } n \text{ beginning on } t \}$$

In other words, n is an upper bound for the length of all sequence of rewriting beginning on t.
The complexity of a derivation is the length of this derivation.

Definition

We say that a term \(t \in \mathcal{T}(C \cup F, X) \) have a complexity \(n \in \mathbb{N} \) if it is the length of the longest derivation:

\[
\max\{n \mid \text{there have a derivation with a length } n \text{ beginning on } t\}
\]

In other words, \(n \) is an upper bound for the length of all sequence of rewriting beginning on \(t \).
The complexity of a derivation is the length of this derivation.

Definition

We say that a term \(t \in \mathcal{T}(C \cup F, \mathcal{X}) \) have a complexity \(n \in \mathbb{N} \) if it is the length of the longest derivation:

\[
\max\{n | \text{there have a derivation with a length } n \text{ beginning on } t\}
\]

In other words, \(n \) is an upper bound for the length of all sequence of rewriting beginning on \(t \).
The complexity of a derivation is the length of this derivation.

Definition

We say that a term \(t \in \mathcal{T}(C \cup F, \mathcal{X}) \) *have a complexity* \(n \in \mathbb{N} \) *if it is the length of the longest derivation:*

\[
\max\{n \mid \text{there have a derivation with a length } n \text{ beginning on } t\}
\]

In other words, \(n \) is an upper bound for the length of all sequence of rewriting beginning on \(t \).
An example

For example

\[+ s(s(0)) s(0) \rightarrow + s(0) s(s(0)) \rightarrow + 0 s(s(s(0))) \rightarrow s(s(s(0))) \]

have a complexity of 3 and it is the only one derivation. So the complexity of \(+ s(s(0)) s(0)\) is 3.
We define the size of a term as the number of symbols used in this term. For example

We define the complexity of a system as a function \(c : \mathbb{N} \rightarrow \mathbb{N} \) such that for all \(n \in \mathbb{N} \), \(c(n) \) is the biggest complexity for a term with a size less than \(n \).

For the addition system we have \(c(n) = n - 3 \) for \(n \geq 3 \).
We define the size of a term as the number of symbols used in this term. For example

We define the complexity of a system as a function $c : \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, $c(n)$ is the biggest complexity for a term with a size less than n.

For the addition system we have $c(n) = n - 3$ for $n \geq 3$.
Min or Max?

- Some authors (Jean-Yves Marion for example) define the complexity with
 \[
 \min \{ n \mid \text{there have a derivation with a length } n \text{ beginning on } t \}
 \]

- These definitions seem not compatible. For example with this system:

\[
\begin{align*}
+ 0 y & \rightarrow y \\
+ s(x) y & \rightarrow + x s(y) \\
f x y & \rightarrow x
\end{align*}
\]

And with the term:

\[f 0 (+ s(s(0)) s(0))\]
First definitions
What is the complexity of a rewriting system?
2 points of view
From the size to complexity

Min or Max?

• Some authors (Jean-Yves Marion for example) define the complexity with

$$\min \{ n \mid \text{there have a dérivation with a length } n \text{ beginning on } t \}$$

• These definitions seem not compatible. For example with this system:

$$\begin{align*}
+ 0 \ y & \rightarrow \ y \\
+ s(x) \ y & \rightarrow + x \ s(y) \\
f \ x \ y & \rightarrow x
\end{align*}$$

And with the term:

$$f \ 0 \ (+ \ s(s(0)) \ s(0))$$
What is the complexity of a rewriting system?

2 points of view

From the size to complexity

Another problem with these definitions

We have shown the following theorem:

Theorem

*If a deterministic Turing machine can simulate a rewriting system (confluent on well formed input) with only a polynomial increasing of time on the complexity (defined by the Min) then:

\[P = NP \cap Co-NP \]*
Idea of the proof

- For $L \in \text{NP} \cap \text{Co-NP}$ there exist a polynomial algorithm A such that for all $x \in L$ there exist a certificate c_x such that:

$$A(x, c_x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$$

- In the execution we generate a random certificate and check it.
 - If the certificate is correct stops on output.
 - else we enumerate all certificates to find a correct certificate.

- The length of the shortest execution is bounded by polynomial.
Hot spot in the proof

- How transform a Turing machine into a rewriting system?

- How to do represent a sequence of calculi by rewriting system.
How transform a Turing machine into a rewriting system?

How to do represent a sequence of calculi by rewriting system.
Min and Max in a simple case

Proposition

In a rewriting system without critical pairs all innermost reductions have the same size.

In this case the distinction with Min and Max is not a problem.
First definitions
What is the complexity of a rewriting system?
2 points of view
From the size to complexity

Min and Max in a simple case

Proposition

In a rewriting system without critical pairs all innermost reductions have the same size.

In this case the distinction with Min and Max is not a problem.
First definitions
What is the complexity of a rewriting system?
2 points of view
From the size to complexity

Table of contents:

1. First definitions
2. What is the complexity of a rewriting system?
3. 2 points of view for this work
4. From the size to complexity
First definitions

What is the complexity of a rewriting system?

2 points of view

From the size to complexity

Size bounding for termination

- F. Blanqui (and others) use annotation system on the types to bound the output size.
- This system is powerful to show the termination of some functions.
- We want re-use this system to provide a new annotation system to bound the complexity.
What is the complexity of a rewriting system?

2 points of view

From the size to complexity

Size bounding for termination

- F. Blanqui (and others) use annotation system on the types to bound the output size.
- This system is powerful to show the termination of some functions.
- We want re-use this system to provide a new annotation system to bound the complexity.
Size bounding for termination

- F. Blanqui (and others) use annotation system on the types to bound the output size.
- This system is powerful to show the termination of some functions.
- We want re-use this system to provide a new annotation system to bound the complexity.
Bound for complexity

- J.Y. Marion (and others) provide tools to study the complexity of some rewriting systems.
- With these bounds Marion can characterize polynomial time bounded functions with a set of rewriting system.
- The complexity bounds are relay huge (but polynomial). In most cases these bounds are reasonable in comparison of the real complexity.
- In Marion’s work the link with complexity and size is relay important.
Bound for complexity

- J.Y. Marion (and others) provide tools to study the complexity of some rewriting systems.
- With these bounds Marion can characterize polynomial time bounded functions with a set of rewriting system.
- The complexity bounds are relay huge (but polynomial). In most cases these bounds are reasonable in comparison of the real complexity.
- In Marion’s work the link with complexity and size is relay important.
Bound for complexity

- J.Y. Marion (and others) provide tools to study the complexity of some rewriting systems.
- With these bounds Marion can characterize polynomial time bounded functions with a set of rewriting system.
- The complexity bounds are relay huge (but polynomial). In most cases these bounds are reasonable in comparison of the real complexity.
- In Marion’s work the link with complexity and size is relay important.
J.Y. Marion (and others) provide tools to study the complexity of some rewriting systems.

With these bounds Marion can characterize polynomial time bounded functions with a set of rewriting system.

The complexity bounds are relay huge (but polynomial). In most cases these bounds are reasonable in comparison of the real complexity.

In Marion’s work the link with complexity and size is relay important.
First definitions

What is the complexity of a rewriting system?

2 points of view

From the size to complexity

Table of contents:

1. First definitions
2. What is the complexity of a rewriting system?
3. 2 points of view for this work
4. From the size to complexity
First definitions
What is the complexity of a rewriting system?
2 points of view
From the size to complexity

Recursive primitive functions model

Definition

- **two constructors**: $0 : \text{Nat}$ and $\text{Succ} : \text{Nat} \to \text{Nat}$.
- **Projections**: $p_i(x_1, ..., x_k) \to x_i$

And with these constructions:

- **Composition**: with g_1, g_2, \ldots, g_k and h primitive recursive functions with good arity then the function $f = h(g_1, ..., g_k)$ is an primitive recursive function.
- **Recursive definition**: if g have an arity n, and $h n + 2$, we define a new recursive primitive function $\mu_{g, h}$:

\[
\begin{align*}
\mu_{g, h}(0, \vec{y}) &= g(\vec{y}) \\
\mu_{g, h}(\text{Succ}(x), \vec{y}) &= h(x, \mu_{g, h}(x, \vec{y}), \vec{y})
\end{align*}
\]
The original μ is:

$$
\begin{align*}
\mu_{g,h}(0, \vec{y}) &= g(\vec{y}) \\
\mu_{g,h}(\text{Succ}(x), \vec{y}) &= h(x, \mu_{g,h}(x, \vec{y}), \vec{y})
\end{align*}
$$

In some cases we can consider a simpler version of μ:

$$
\begin{align*}
\mu'_{g,h}(0, \vec{y}) &= g(\vec{y}) \\
\mu'_{g,h}(\text{Succ}(x), \vec{y}) &= h(\mu_{g,h}(x, \vec{y}))
\end{align*}
$$
We are interested in the innermost strategy.

This strategy allow to look only the size of normal term.

In the recursive primitive functions model a bound for the innermost is a bound for all reductions.
We are interested in the innermost strategy.

This strategy allow to look only the size of normal term.

In the recursive primitive functions model a bound for the innermost is a bound for all reductions.
We are interested in the innermost strategy.

This strategy allows to look only the size of normal term.

In the recursive primitive functions model a bound for the innermost is a bound for all reductions.
Bound the size for the primitive recursive functions

\(\text{Type}, \text{size} \)
Bound the size for the primitive recursive functions \((Type, size)\)

\[
\begin{align*}
0 : (Nat; 1) & \quad Succ : (Nat \to Nat; n \to n + 1) \\
\end{align*}
\]

\[
\begin{align*}
p_i : (Nat \to \cdots \to Nat \to Nat; \alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha_i) \\
\end{align*}
\]

\[
\begin{align*}
g : (Nat \to Nat; n \to n + k_g) & \quad h : (Nat \to Nat; n \to n + k_h) \\
g \circ h : (Nat \to Nat; n \to n + k_g + k_h) \\
\end{align*}
\]

\[
\begin{align*}
g : (Nat \to Nat; n \to n + k_g) & \quad h : (Nat \to Nat; n \to n + k_h) \\
\mu_{g,h} : (Nat \to Nat \to Nat; n \to m \to n(n + m + k_h) + k_g) \\
\end{align*}
\]
Bound the size for the primitive recursive functions \((Type, size)\)

\[
0 : (\text{Nat}; 1) \quad \text{Succ} : (\text{Nat} \to \text{Nat}; n \to n + 1)
\]

\[
p_i : (\text{Nat} \to \cdots \to \text{Nat} \to \text{Nat}; \alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha_i)
\]

\[
g : (\text{Nat} \to \text{Nat}; n \to n + k_g) \quad h : (\text{Nat} \to \text{Nat}; n \to n + k_h)
\]

\[
g \circ h : (\text{Nat} \to \text{Nat}; n \to n + k_g + k_h)
\]

\[
g : (\text{Nat} \to \text{Nat}; n \to n + k_g) \quad h : (\text{Nat} \to \text{Nat}; n \to n + k_h)
\]

\[
\mu_{g,h} : (\text{Nat} \to \text{Nat} \to \text{Nat}; n \to m \to n(n + m + k_h) + k_g)
\]
Bound the size for the primitive recursive functions

\[(\text{Type}, \text{size})\]

\[
0 : (\text{Nat}; 1) \quad \text{Succ} : (\text{Nat} \rightarrow \text{Nat}; n \rightarrow n + 1)
\]

\[
p_i : (\text{Nat} \rightarrow \cdots \rightarrow \text{Nat} \rightarrow \text{Nat}; \alpha_1 \rightarrow \alpha_2 \rightarrow \cdots \rightarrow \alpha_n \rightarrow \alpha_i)
\]

\[
g : (\text{Nat} \rightarrow \text{Nat}; n \rightarrow n + k_g) \quad h : (\text{Nat} \rightarrow \text{Nat}; n \rightarrow n + k_h)
\]

\[
g \circ h : (\text{Nat} \rightarrow \text{Nat}; n \rightarrow n + k_g + k_h)
\]

\[
\mu_{g,h} : (\text{Nat} \rightarrow \text{Nat} \rightarrow \text{Nat}; n \rightarrow m \rightarrow n(n + m + k_h) + k_g)
\]
Bound the size for the primitive recursive functions

Type

\[
\begin{align*}
0 & : \text{Nat}_1 \\
\text{Succ} & : \text{Nat}_n \rightarrow \text{Nat}_{n+1} \\
p_i & : \text{Nat}_{\alpha_1} \rightarrow \text{Nat}_{\alpha_2} \rightarrow \cdots \rightarrow \text{Nat}_{\alpha_n} \rightarrow \text{Nat}_{\alpha_i} \\
g & : \text{Nat}_n \rightarrow \text{Nat}_{n+k_g} \\
h & : \text{Nat}_n \rightarrow \text{Nat}_{n+k_h} \\
g \circ h & : \text{Nat}_n \rightarrow \text{Nat}_{n+k_g+k_h} \\
g & : \text{Nat}_n \rightarrow \text{Nat}_{n+k_g} \\
h & : \text{Nat}_n \rightarrow \text{Nat}_{n+k_h} \\
\mu_{g,h} & : \text{Nat}_n \rightarrow \text{Nat}_m \rightarrow \text{Nat}_{n(n+m+k_h)+k_g}
\end{align*}
\]
The complexity is defined by a function (in $\mathbb{N}^k \to \mathbb{N}$) such that if f has a complexity C_f then all term ft with t in normal form and with a size less than n have a complexity $C_f(n)$.

- $0 : (Nat_1; n \mapsto 0)$
- $Succ : (Nat_n \to Nat_{n+1}; n \mapsto 0)$

- $p_i : (Nat_{\alpha_1} \to \cdots \to Nat_{\alpha_n} \to Nat_{\alpha_i}; n_1, \ldots, n_n \mapsto 1)$

- $g : (Nat_n \to Nat_{n+k_g}; C_g)$
 $h : (Nat_n \to Nat_{n+k_h}; C_h)$

- $g \circ h : (Nat_n \to Nat_{n+k_g+k_h}; n \mapsto C_h(n) + C_g(n + k_h))$
The complexity is defined by a function (in $\mathbb{N}^k \to \mathbb{N}$) such that if f has a complexity C_f then all term ft with t in normal form and with a size less than n have a complexity $C_f(n)$.

$$0 : (\text{Nat}_1; n \mapsto 0) \quad \text{Succ} : (\text{Nat}_n \to \text{Nat}_{n+1}; n \mapsto 0)$$

$$p_i : (\text{Nat}_{\alpha_1} \to \cdots \to \text{Nat}_{\alpha_n} \to \text{Nat}_{\alpha_i}; n_1, \ldots, n_n \mapsto 1)$$

$$g : (\text{Nat}_n \to \text{Nat}_{n+k_g}; C_g) \quad h : (\text{Nat}_n \to \text{Nat}_{n+k_h}; C_h)$$

$$g \circ h : (\text{Nat}_n \to \text{Nat}_{n+k_g+k_h}; n \mapsto C_h(n) + C_g(n+k_h))$$
The complexity is defined by a function \((\text{in } \mathbb{N}^k \rightarrow \mathbb{N})\) such that if \(f \) has a complexity \(C_f \) then all term \(ft \) with \(t \) in normal form and with a size less than \(n \) have a complexity \(C_f(n) \).

\[
0 : (Nat_1; n \mapsto 0) \quad \text{Succ} : (Nat_n \rightarrow Nat_{n+1}; n \mapsto 0)
\]

\[
\begin{align*}
p_i : (Nat_{\alpha_1} \rightarrow \cdots \rightarrow Nat_{\alpha_n} \rightarrow Nat_{\alpha_i}; n_1, \ldots, n_n \mapsto 1) \\
g : (Nat_n \rightarrow Nat_{n+k_g}; C_g) \\
h : (Nat_n \rightarrow Nat_{n+k_h}; C_h) \\
g \circ h : (Nat_n \rightarrow Nat_{n+k_g+k_h}; n \mapsto C_h(n) + C_g(n + k_h))
\end{align*}
\]
From the size to the complexity : \((Type_{size}, complexity)\)

\[
g : (\text{Nat}_n \rightarrow \text{Nat}_{n+k_g}; C_g) \quad h : (\text{Nat}_n \rightarrow \text{Nat}_{n+k_h}; C_h) \\
\mu_{g,h} : (\text{Nat}_n \rightarrow \text{Nat}_m \rightarrow \text{Nat}_{n(n+m+k_h)+k_g}; (n, m) \mapsto t)
\]

With

\[
t = C_g(m) + \sum_{x=1}^{n} C_h(x + x(x + m + k_h) + k_g + m)
\]
An example

When $C_g(n) \leq n^\alpha$ and $C_h(n) \leq n^\beta$ then:

\[
t = C_g(m) + \sum_{x=1}^{n} C_h(x + x(x + m + k_h) + k_g + m)
\leq m^\alpha + \sum_{x=1}^{n} (x + x(x + m + k_h) + k_g + m)^\beta
\leq m^\alpha + \sum_{x=1}^{n} x^{2\beta}(1 + k_g + k_h + 2m)
\leq m^\alpha + n^{2\beta+1}(1 + k_g + k_h + 2m)
\]
An example

When $C_g(n) \leq n^\alpha$ and $C_h(n) \leq n^\beta$ then:

$$t = C_g(m) + \sum_{x=1}^{n} C_h(x + x(x + m + k_h) + k_g + m)$$

$$\leq m^\alpha + \sum_{x=1}^{n} (x + x(x + m + k_h) + k_g + m)^\beta$$

$$\leq m^\alpha + \sum_{x=1}^{n} x^{2\beta} (1 + k_g + k_h + 2m)$$

$$\leq m^\alpha + n^{2\beta+1} (1 + k_g + k_h + 2m)$$
We can define the sum of 2 integer with :

\[
\begin{align*}
 h(x_1, x_2, x_3) &= \text{Succ}(p_2(x_1, x_2, x_3)) \\
 g(y) &= y \\
 \text{Sum}(x, y) &= \mu_{g,h}(x, y)
\end{align*}
\]

- With \(|h(x_1, x_2, x_3)| \leq 1 + |x_2| \) and \(|g(y)| = |y| \).
- So : \(\text{Sum}(x, y) \) have a size bounded by \(|x|(|x| + |y| + 1) \).
First definitions
What is the complexity of a rewriting system?
2 points of view
From the size to complexity

Sum

We can define the sum of 2 integer with:

\[
\begin{align*}
 h(x_1, x_2, x_3) &= \text{Succ}(p_2(x_1, x_2, x_3)) \\
 g(y) &= y \\
 \text{Sum}(x, y) &= \mu_{g,h}(x, y)
\end{align*}
\]

- With \(|h(x_1, x_2, x_3)| \leq 1 + |x_2|\) and \(|g(y)| = |y|\).
- So: \(\text{Sum}(x, y)\) have a size bounded by \(|x|(|x| + |y| + 1)|.\)
We can define the sum of 2 integer with:

\[
\begin{align*}
 h(x_1, x_2, x_3) &= \text{Succ}(p_2(x_1, x_2, x_3)) \\
 g(y) &= y \\
 \text{Sum}(x, y) &= \mu_{g,h}(x, y)
\end{align*}
\]

- With \(|h(x_1, x_2, x_3)| \leq 1 + |x_2|\) and \(|g(y)| = |y|\).
- So: \(\text{Sum}(x, y)\) have a size bounded by \(|x|(|x| + |y| + 1)\).
So, with the classical μ we cannot bound the complexity of the multiplication.

But with the μ' we can:

\[
\begin{align*}
\mu'_{g,h}(0, \bar{y}) &= g(\bar{y}) \\
\mu'_{g,h}(\text{Succ}(x), \bar{y}) &= h(\mu_{g,h}(x, \bar{y}))
\end{align*}
\]
So, with the classical μ we cannot bound the complexity of the multiplication.

But with the μ' we can:

$$\begin{align*}
\mu'_{g,h}(0, \vec{y}) &= g(\vec{y}) \\
\mu'_{g,h}(\text{Succ}(x), \vec{y}) &= h(\mu_{g,h}(x, \vec{y}))
\end{align*}$$
Summary of the work

- We have study the relation with the complexity defined by Min and Max.
- The link with the Turing complexity and the complexity in rewriting system.
- We have provide a bound for the complexity in the recursive primitives function model based on bounds of the output size.
We have studied the relation with the complexity defined by Min and Max.

The link with the Turing complexity and the complexity in rewriting systems.

We have provided a bound for the complexity in the recursive primitives function model based on bounds of the output size.
First definitions
What is the complexity of a rewriting system?
2 points of view
From the size to complexity

Summary of the work

- We have studied the relation with the complexity defined by Min and Max.
- The link with the Turing complexity and the complexity in rewriting systems.
- We have provided a bound for the complexity in the recursive primitives function model based on bounds of the output size.
Summary of the work

- We have study the relation with the complexity defined by Min and Max.
- The link with the Turing complexity and the complexity in rewriting system.
- We have provide a bound for the complexity in the recursive primitives function model based on bounds of the output size.
Future work

- Re-use a more formal annotation system (for example the Blanqui’s one).

- Generalisation for a true type system (and not only for first order).

- Generalisation for a more general set of rewriting system.

- How check the complexity of a set of function ? How infer it ?
Future work

- Re-use a more formal annotation system (for example the Blanqui’s one).

- Generalisation for a true type system (and not only for first order).

- Generalisation for a more general set of rewriting system.

- How check the complexity of a set of function? How infer it?
Future work

- Re-use a more formal annotation system (for example the Blanqui’s one).

- Generalisation for a true type system (and not only for first order).

- Generalisation for a more general set of rewriting system.

- How check the complexity of a set of function? How infer it?
Future work

- Re-use a more formal annotation system (for example the Blanqui’s one).

- Generalisation for a true type system (and not only for first order).

- Generalisation for a more general set of rewriting system.

- How check the complexity of a set of function? How infer it?
First definitions
What is the complexity of a rewriting system?
2 points of view
From the size to complexity

Problem about these generalisation

For the moment we are bounded by $PTIME$ function (in base 1), and a more powerful system of annotation should be extend this field.
A link with time complexity and space complexity seems is clear.

It is not easy to propose good restriction to provide an interesting bounds.

An interesting field.
A link with time complexity and space complexity seems is clear.

It is not easy to propose good restriction to provide an interesting bounds.

An interesting field.
A link with time complexity and space complexity seems is clear.

It is not easy to propose good restriction to provide an interesting bounds.

An interesting field.
First definitions
What is the complexity of a rewriting system?
2 points of view
From the size to complexity

Thank you!

Questions?
First definitions
What is the complexity of a rewriting system?
2 points of view
From the size to complexity

Thank you!

Questions?