On the formalization of \(\lambda\)-calculus and Tait-Girard’s notion of computability (work in progress)

Frédéric Blanqui

3rd Workshop on Proof Theory and Rewriting
4-8 March 2013
Kanazawa, Japan
Formalize:

- higher-order rewriting, i.e. rewriting on λ-terms
- proofs of theorems on the termination of higher-order rewriting, especially those based on Tait-Girard’s notion of computability (e.g. computability closure, HORPO)

Applications:

- formalization of calculi, type and logical systems using terms with binders, and certification of their properties (e.g. POPLmark challenge)
- certification of termination proofs of higher-order rewrite systems and functional programs
higher-order rewriting is rewriting on λ-terms

\Rightarrow we first need to formalize λ-terms

problem: on λ-terms, substitution is usually defined modulo α-equivalence (renaming of bound variables)

$$(\lambda xy)_y^x = \lambda x'x$$
Curry and Feys’ definition of α-equivalence (1958)

(q) $X R X$ (reflexiveness),

(\sigma) $X R Y \Rightarrow Y R X$ (symmetry),

(\tau) $X R Y \& Y R Z \Rightarrow X R Z$ (transitivity),

(\mu) $X R Y \Rightarrow ZX R ZY$ (right monotony),

(\nu) $X R Y \Rightarrow XZ R YZ$ (left monotony).

(\xi) $X R Y \Rightarrow \lambda x X R \lambda x Y$.

(a) If y does not occur free in X, $\lambda y[y/x]X R \lambda x X$.

Frédéric Blanqui (INRIA) Formalization of λ-calculus and Girard’s computability
Curry and Feys’ definition of substitution (1958)

Definition 1. \([M/x]X\) is the ob \(X^*\) defined as follows:

Case 1. \(X\) is a variable.

(a) If \(X \equiv x\), then \(X^* \equiv M\).

(b) If \(X \equiv y \not\equiv x\), then \(X^* \equiv X\).

Case 2. \(X \equiv YZ\). Then \(X^* \equiv Y^*Z^*\).

Case 3. \(X \equiv \lambda y Y\).

(a) If \(y \equiv x\), then \(X^* \equiv X\).

(b) If \(y \not\equiv x\), then \(X^* \equiv \lambda z [M/x] [z/y] Y\),

where \(z\) is the variable defined as follows:

(i) If \(x\) does not occur free in \(Y\), or if \(y\) is not free in \(M\), then \(z \equiv y\);

(ii) if \(x\) is free in \(Y\) and \(y\) is free in \(M\), then \(z\) is the first variable in the list \(e_1, e_2, \ldots\) such that \(z \not\equiv x\) and \(z\) does not occur free in either \(M\) or \(Y\).
follows then 10 pages to prove basic properties and in particular that substitution is compatible with α-equivalence (3 pages). . .
Theorem 1. The ob $[M/x]X$ has the properties:

(a) $[x/x]X \equiv X$.

(b) If x does not occur free in X,

$$[M/x]X \equiv X.$$

(c) If no variables which occur free in M or N are bound in X, and $N' \equiv [M/x] N$; then

$$[M/x] [N/y] X \equiv [N'/y] [M/x] X$$

holds under either of the following conditions:

(c$_1$) y does not occur free in M,

(c$_2$) x does not occur free in X.

Theorem 2. If equality is α-convertibility, then:

(a) the relation

\[X = Y \rightarrow [M/x] X = [M/x] Y \]

holds for all obs \(X, Y, M,\) and all variables \(x.\)

(b) If \(X\) is an ob and \(\sigma\) a given finite set of variables; then there exists an ob \(Y\) such that

\[X = Y, \]

and such that no variable of \(\sigma\) is bound in \(Y,\) whereas the bound variables of \(X\) not in \(\sigma\) are bound in the corresponding occurrences in \(Y.\)

(c) If \(N', (c_1),\) and \((c_2)\) are as in Theorem 1c; then

\[[M/x] [N/y] X = [N'/y] [M/x] X \]

holds under either of the conditions \((c_1), (c_2)\) without further restriction.
Curry and Feys approach (1958)

it takes 10 pages to prove basic properties and in particular that substitution is compatible with α-equivalence (3 pages)…

this may explain why Curry and Feys’ definition has not been extensively used in formalizations and led many authors to try alternative approaches:

▶ de Bruijn indices (1972)
▶ higher-order features of meta-language [HOAS] (Pfenning and Elliot, 1988)
▶ de Bruijn indices for bound variables only (Huet, 1989)
▶ distinct name sets for bound and free variables (McKinna and Pollack, 1993)
▶ nominal terms (Gabbay and Pitts, 1999)
▶ terms with height function (Sato and Pollack, 2008)
▶ …
Formalizations following Curry and Feys’s approach

- 1985: Shankar in NQTHM:
 - confluence of β

- 2000: Ford and Mason in PVS:
 - confluence of Landin’s call-by-value Iswim
 - CIU theorem (Closed Instances of Uses)

- 2001: Homeier in HOL:
 - confluence of $\beta\eta$

- 2003: Vestergaard and Brotherston in Isabelle/HOL:
 - finite developments
 - standardization theorem
 - ...
Formalizations of termination proofs

most formalization works consider confluence or safety properties

few consider termination properties:

▶ 1993: Altenkirch in Lego:
 termination of system F
 using full de Bruijn indices

▶ 2004: Koprowski in Coq:
 termination of HORPO
 using full de Bruijn indices

▶ 2006: Berger et al in Coq, Isabelle/HOL and Minlog:
 termination of simply typed λ-calculus
 using full de Bruijn indices or HOAS
My formalization work in Coq

See http://color.inria.fr.

Definitions can be seen on
http://color.inria.fr/doc/main.html:

- **LTerm**: λ-terms
- **LSubs**: higher-order substitution
- **LAlpha**: α-equivalence
- **LBeta**: β-reduction
- **LComp**: some axiomatization of Tait’s computability
- **LSimple**: simply typed λ-terms
- **LCompSimple**: termination of β on simply typed λ-terms

To see the proofs, you need to download CoLoR.
Variables F X : Type.

Inductive Te : Type :=
| Var (x : X)
| Fun (f : F)
| App (u v : Te)
| Lam (x : X) (u : Te).

(* using Coq standard library on finite sets: *)

Parameter var_notin : XSet.t -> X.

Parameter var_notin_ok : forall xs, ~In (var_notin xs) xs.
Substitution

We extend Curry and Feys’ definition to simultaneous substitutions (like Stoughton 1988 but we rename only when it is necessary)

Definition var x u s :=
 let xs := fvcodom (remove x (fv u)) s in
 if mem x xs then var_notin (union (fv u) xs) else x.

Fixpoint subs (s : X -> Te) (t : Te) :=
 match t with
 | Var x => s x
 | Fun f => t
 | App u v => App (subs s u) (subs s v)
 | Lam x u => let x' := var x u s in
 Lam x' (subs (update x (Var x') s) u)
 end.
Inductive aeq : relation Te :=
| aeq_refl : forall u, aeq u u
| aeq_sym : forall u v, aeq u v -> aeq v u
| aeq_trans : forall u v w, aeq u v -> aeq v w -> aeq u w
| aeq_app_l : forall u u' v,
aeq u u' -> aeq (App u v) (App u' v)
| aeq_app_r : forall u v v',
aeq v v' -> aeq (App u v) (App u v')
| aeq_lam : forall x u u',
aeq u u' -> aeq (Lam x u) (Lam x u')
| aeq_alpha : forall x u y,
 ~In y (fv u) -> aeq (Lam x u) (Lam y (rename x y u)).

Infix "~~" := aeq (at level 70).
Compatibility of substitution wrt α-equivalence

Instance subs_aeq : Proper (Logic.eq ==> aeq ==> aeq) subs.

Most difficult theorem.
Curry and Feys’ proof takes about 100 lines.
My proof is about 200 lines with no automation.

To conduct the proof, we use a renaming-free substitution subs1:
- equivalent to subs when bound and free variables are distinct
- easier to work with
Fixpoint subs1 s (t : Te) :=
 match t with
 | Var x => s x
 | Fun f => t
 | App u v => App (subs1 s u) (subs1 s v)
 | Lam x u => Lam x (subs1 (update x (Var x) s) u)
end.

Lemma subs1_no_alpha : forall u s,
 inter (bv u) (fvcodom (fv u) s) [=] empty
 -> subs s u = subs1 s u.
Dealing with α-equivalence explicitly

Lemma aeq_notin_bv : forall xs u,
 exists v, u \sim v $\setminus\setminus$ inter (bv v) xs $\mathbf{=} \emptyset$.

Lemma saeq_notin_bvcodom :
 forall ys s xs, exists s', saeq xs s s'
 $\setminus\setminus$ inter (bvcod xs s') ys $\mathbf{=} \emptyset$ $\setminus\setminus$ dom_incl xs s'.
some axiomatized version of Tait’s computability
Module Type CP_Struct.

(** We assume given a relation [\(\rightarrow Rh\)] and a predicate [neutral] that is compatible with alpha-equivalence.*)

Parameter Rh : relation Te. Infix "\(\rightarrow Rh\)" := Rh (at level 70).
Parameter neutral : Te -> Prop.
Declare Instance neutral_aeq : Proper (aeq ==> impl) neutral.

(** We denote by \([\rightarrow R]\) the monotone closure of \([\rightarrow Rh]\) and by \([\Rightarrow R]\) the closure by alpha-equivalence of \([\rightarrow R]\).*)

Notation R := (clos_mon Rh). Infix "\(\rightarrow R\)" := (clos_mon Rh) (at level 70).
Notation R_aeq := (clos_aeq (clos_mon Rh)).
Infix "\(\Rightarrow R\)" := (clos_aeq (clos_mon Rh)) (at level 70).
(** Properties of [neutral]. *)

(* abstractions are not neutral *)
Parameter not_neutral_lam :
 forall x u, ~neutral (Lam x u).

(* variables and beta-redexes are neutral *)
Parameter neutral_var : forall x, neutral (Var x).
Parameter neutral_beta :
 forall x u v, neutral (App (Lam x u) v).

(* if [u] is neutral then [App u v] is neutral *)
Parameter neutral_app :
 forall u v, neutral u \rightarrow neutral (App u v).
(* [=]R is stable by substitution *)
Declare Instance subs_R_aeq :
 Proper (Logic.eq ==> R_aeq ==> R_aeq) subs.

(* [=]R preserves free variables *)
Declare Instance fv_Rh : Proper (Rh --> Subset) fv.

(* variables and abstractions are not head-reducible *)
Parameter not_Rh_var : forall x u, ~ Var x ->Rh u.
Parameter not_Rh_lam : forall x u w, ~ Lam x u ->Rh w.

(* the head-reduct of a beta-redex is its beta-reduct *)
Parameter Rh_bh : forall x u v w,
 App (Lam x u) v ->Rh w -> App (Lam x u) v ->bh w.

(* if [u] is neutral then [App u v] is not head-reducible *)
Parameter not_Rh_app_neutral :
 forall u v w, neutral u -> ~ App u v ->Rh w.
Computability predicates \(P : \text{pred} := \text{Te} \rightarrow \text{Prop} \)

(* computability is stable by alpha-equivalence *)
Definition \(\text{cp}_\text{aeq} \) \((P : \text{pred}) := (\text{Proper} (\text{aeq} \rightarrow \text{impl}) P) \).

(* computability implies termination wrt \([\Rightarrow\text{R}]\) *)
Definition \(\text{cp}_\text{sn} \) \((P : \text{pred}) := \forall u, \ P \ u \rightarrow \text{SN} \ R_\text{aeq} \ u \).

(* computability is stable by reduction wrt \([\Rightarrow\text{R}]\) *)
Definition \(\text{cp}_R_\text{aeq} \) \((P : \text{pred}) := \text{Proper} (\text{R}_\text{aeq} \rightarrow \text{impl}) \ P \).

(* neutrals are computable if their \([\Rightarrow\text{R}]\)-reducts so are *)
Definition \(\text{cp}_\text{neutral} \) \((P : \text{pred}) := \forall u, \text{neutral} \ u \rightarrow \forall v, u \Rightarrow\text{R} \ v \rightarrow P \ v \rightarrow P \ u \).

Class \(\text{cp} \ P := \{ \text{cp1} : \text{cp}_\text{aeq} \ P; \text{cp2} : \text{cp}_\text{sn} \ P; \text{cp3} : \text{cp}_R_\text{aeq} \ P; \text{cp4} : \text{cp}_\text{neutral} \ P \} \).
Properties of CP structures

(* the set of terminating terms is a CP *)
Lemma cp_SN : cp (SN R_aeq).

(* \([\text{arr} \ P \ Q]\) is a CP if both \([P]\) and \([Q]\) so are *)
Definition arr (P Q : pred) u :=
 \[\forall v, P \ v \rightarrow Q \ (\text{App} \ u \ v)\].
Lemma cp_arr : \[\forall P \ Q, \ \text{cp} \ P \rightarrow \ \text{cp} \ Q \rightarrow \ \text{cp} \ (\text{arr} \ P \ Q)\].

(* sufficient conditions for a beta-redex to be computable *)
Lemma cp_beta : \[\forall P, \ \text{cp} \ P \rightarrow \]
 \[\forall x \ u \ v, \ \text{SN} \ R_{\text{aeq}} \ (\text{Lam} \ x \ u) \rightarrow \ \text{SN} \ R_{\text{aeq}} \ v \rightarrow \]
 \[P \ (\text{subs} \ (\text{single} \ x \ v) \ u) \rightarrow \ P \ (\text{App} \ (\text{Lam} \ x \ u) \ v)\].
Variable $B : \text{Type}$.

Inductive $Ty : \text{Type} :=$
| $\text{Base} : B \to Ty$
| $\text{Arr} : Ty \to Ty \to Ty$.

Infix "~~>" := Arr (at level 55, right associativity).
Simply typed λ-terms

Parameter typ : F -> Ty.

Notation En := (XMap.t Ty).

Inductive tr : En -> Te -> Ty -> Prop :=
| tr_var : forall E x T, MapsTo x T E -> tr E (Var x) T
| tr_fun : forall E f, tr E (Fun f) (typ f)
| tr_app : forall E u v V T,
 tr E u (V ~> T) -> tr E v V -> tr E (App u v) T
| tr_lam : forall E x X v V,
 tr (add x X E) v V -> tr E (Lam x v) (X ~> V).

Notation "E '|-’ v '~-:' V" := (tr E v V) (at level 70).
Lemma tr_strengthening : forall E v V, E |- v ~: V ->
 forall y, ~XSet.In y (fv v) -> remove y E |- v ~: V.

Definition wt s E F :=
 forall x T, MapsTo x T E -> F |- s x ~: T.

Lemma tr_subs : forall E v V, E |- v ~: V ->
 forall s F, wt s E F -> F |- subs s v ~: V.

(* [tr] is stable by alpha-equivalence *)
Instance tr_aeq_impl :
 Proper (Equal ==> aeq ==> Logic.eq ==> impl) tr.

(* subject reduction for [beta_aeq] *)
Instance tr_beta_aeq :
 Proper (Logic.eq ==> beta_aeq ==> Logic.eq ==> impl) tr.
Module SN (Import P : CP_Struct).

Variables (Bint : B -> pred)
 (cp_Bint : forall b, cp (Bint b)).

Fixpoint int T :=
 match T with
 | Base b => Bint b
 | Arr A B => arr (int A) (int B)
 end.

Definition valid E s :=
 forall x T, MapsTo x T E -> int T (s x).

Lemma valid_id : forall E, valid E id.
Variable comp_fun : forall f, int (typ f) (Fun f).

Lemma tr_int : forall v E V, E |- v ~: V ->
 forall s, valid E s -> int V (subs s v).

Lemma tr_sn : forall E v V, E |- v ~: V -> SN R_aeq v.

End SN.
I have formalized in Coq:

- pure \(\lambda \)-calculus by strictly following Curry and Feys’ definitions:
 - \(\lambda \)-terms are first-order terms with named variables
 - substitution explicitly renames bound variables when necessary
 - \(\alpha \)-equivalence is considered explicitly
 but I do not consider \(\alpha \)-equivalence classes

- some axiomatized version of Tait-Girard’s comp. predicates

- Curry-style simple types on the pure \(\lambda \)-calculus

- termination of \(\beta \)-reduction on simply-typed \(\lambda \)-terms
“basic” properties of substitution are indeed difficult to prove (e.g. stability by α: 200 lines vs 100 lines in Curry and Feys)

but current proof could be improved by using more automation (general tactic for reasoning on finite sets $+$ specific tactics)

and, once this is done, things are not so difficult so far and similar to paper-and-pen proofs by:

- checking that functions and predicates are invariant by α-equivalence (these properties are then automatically taken into account by Coq thanks to Mathieu Sozeau’s type class system, 2008)
- using explicit renamings when necessary

but we need to formalize more complex calculi/proofs to draw more general conclusions
Thank you for your attention!

Questions?